

Grade	Mark R	equired	% condidator	achieving grade	
Awarded	(/ ₁₂₀)	%	% canalaates	achieving grade	
A	84+	70.0%	34	4.9%	
В	68+	56.7%	24.1%		
С	53+	44.2%	19.3%		
D	37+	30.1%	12.9%		
No award	<37	<30.1%	8.8%		
Section:	Multiple	Choice	Extended Answer Assignment		
Average Mark:	16.4	/25	55.1 /95 No Assignment in 20		

2022 Higher Chemistry Marking Scheme % Reasoning MC Qu Answer Correct 🗷 A Boron is a covalent network due to its high melting point B Neon is monatomic in Group 0 due to its full pouter shell 74 1 D **E**C Sodium is a metal and contains metallic bonding D Sulphur has a covalent S₈ structure and has LdF between molecules ☑A Forming a 2+ ion creates a full outer shell and a low 2nd ionisation energy B Forming a 3+ ion creates a full outer shell and a low 3rd ionisation energy 2 67 Α EC ionisation energy removes electrons and forms positive ions D ionisation energy removes electrons and forms positive ions 🗷 A Intermolecular forces decide the boiling point not the covalent bonds inside B Intermolecular forces decide the boiling point not the covalent bonds inside 3 С 48 🗹 C Permanent dipole to permanent dipole attractions between polar covalent HCl molecules are stronger than London dispersion forces between H2 molecules 🗷 D Van der Waals' forces are never stronger than covalent bonds Oxidising Agent Agent **Reducing Agent** Action of Agent on Another Species reduces another species oxidises another species Action on Agent Itself agent is oxidised agent is reduced 63 4 В Effect on Electrons in Agent loss of electrons gain of electrons Likely Electronegativity of Agent low high Position in Electrochemical series bottom Left top right 6Fe³⁺ 6Fe²⁺ -2Cr³⁺ Redox: $Cr_2O_7^{2-}$ + 14H⁺ + 7H₂O + 5 45 6Fe²⁺ -Oxidation: 6Fe³⁺ D + 6e-6e⁻ → 2Cr³⁺ **Reduction:** $Cr_2O_7^{2-}$ + 14H⁺ + + 7H₂O MgBr₂ MqSO₄ Formula: Mole ratio: 1mol: 1mol 1mol: 2mol 49 Α 6 4mol Br⁻ ions 2mol: 4mol 3mol Mg²⁺ ions 2mol 1mol 1mol SO42- ions 1mol: 1mol Ester Link Н н н 0 н 7 84 D Н н Н Н н Н C₅ carboxyl side C_3 alcohol side ∴Ends in Pentanoate ∴Starts with Propyl ■ A octan-4-one has formula C₈H₁₆O Structure shown B 2-ethylhexanal has formula C₈H₁₆O has formula 52 8 С ☑C 2-ethylhexan-1-ol has formula C₈H₁₈O $C_8H_{16}O$ D 5-methylheptan-3-one has formula C₈H₁₆O Name Hydroxyl Carboxyl Amine Carbonyl O Н 9 82 Α Functional Í — OH

С -

OH

Н

- N

Group

			EA C=C double bond in prenol molecule would decolourise bromine solution quickly					
10	С	73	⊠B C=C double bond in prenol molecule would decolourise bromine solution quickly ☑C Prenol would decolourise bromine solution and react with hot copper (II) oxide					
			Note that the second					
11	В	48	 Palm oil has iodine number of 48 ∴ 48g of Iodine reacts with 100g of palm oil Olive oil has iodine number of 84 ∴ 84g of Iodine reacts with 100g of olive oil palm oil must contain less C=C double bonds than olive oil as less iodine is required by palm oil to saturate the molecules completely. palm oil must be more saturated than olive oil if it contains less C=C bonds more saturated palm oil molecules fit together better would meaning palm oil molecules are closer together and raises melting point of palm oil. 					
12	В	86	 A head section is polar making it hydrophilic. B hydrophilic head dissolves in water and hydrophobic tail dissolves in oil C head section is polar would dissolve in water making it hydrophilic. 					
			Image: Section is polar would dissolve in water.					
13	D	87	$\begin{array}{ c c c c c }\hline 2-\text{methylbutan-1-ol} & 2-\text{methylbutan-2-ol} & butan-1-ol & butan-2-ol \\ \hline H \\ H \\$					
14	С	77	ABCDcucumber flavourvanilla flavourginger flavourOrange flavourH H_{1} H_{1} H_{1} H_{1} C H_{1} H_{1} H_{2} H_{2} C H_{1} H_{2} H_{2} H_{2} C H_{2} H_{2} H_{2} H_{2} C H_{2} H_{2					
15	В	76	■ A Carbonyl group would be numbered C₂ to give functional group lowest numbering system ■ B Secondary alcohol 4-methylpentan2-ol oxidises to form the ketone 4-methylpentan-2-one ■ C Molecule is secondary alcohol and would oxidise to form a ketone not aldehyde					
16	С	54	 D Molecule is secondary alcohol and would oxidise to form a ketone not aldehyde A the bottom of the meniscus should be used to measure the volumes in a burette B rinsing the burette with deionised water will result in the dilution of the next solution in burette C small volume of the reactant in the burette should be used to rinse the burette before use, the bottom of the meniscus should be used to measure volumes and draining a small volume of acid will remove any air bubble below the tap in the burette. 					
17	В	58	Image: Second state in the image: Second sta					
18	D	86	rate = $\frac{1}{\text{time}} = \frac{1}{0.004} = 250s$					
19	A	63	$C_{4}H_{8(g)} + 6O_{2(g)} \rightarrow 4CO_{2(g)} + 4H_2O_{(g)}$ $\stackrel{1 \text{mol}}{1 \text{vol}} 6 \text{vol} 6 \text{vol} 4 v$					

			■ A No effect as neither Na ⁺ or Cl ⁻ ions is	a reactant or product and do	n't react	with a rea	actant/pr	oduct			
20	~		\blacksquare B H ⁺ ions in HCl _(aq) increases concentration	•							
20	C	58	$\square C OH^{-}$ ions in NaOH(aq) neutralises H ⁺ in				H⁺ ions				
			ED CH3COO ions in CH3COONa(aq) increas								
			Quantity	Measured	A	В	С	D			
			Enthalpy of Reactants	Where R starts	20	20	20	20			
			(kJ mol⁻¹)	on y-axis	30	30	30	30			
21	D	75	Activation Energy	Difference between R	80-30	110-30	110-30	140-30			
	•		of Forward Reaction (kJ mol ⁻¹)	and top of hill	= 50	= 80	= 80	= 110			
			Activation Energy	Difference between P	80-40	110-40	110-70	140-70			
			of Reverse Reaction (kJ mol ⁻¹)	and top of hill	= 40	= 70	= 40	= 70			
			$\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4$	w/—	ΔH_1 :	= -210kJ	mol ⁻¹	→ 7			
			$\Delta H_4 = \Delta H_1 - \Delta H_2$	v v				4			
22	~	70		1	H₂ = -50	kT mal ⁻¹		ΔH4			
22	В	B 78		- (-86) \ ^{\[\]}	F1250	KJ MOI					
			ΔH_4 = -74kJ mol ⁻¹			- 8647	mal ⁻¹	/			
			But ∆H for Z to Y = +74I	×J mol ⁻¹	X	= -86kJ		·У			
22		10	50cm ³ diluted in a 250cm ³ standar	50cm ³ diluted in a 250cm ³ standard/volumetric flask gives 1 in 5 dilution.							
23	Α	62	0.100mol l ⁻¹ given 1 in 5 dilutio	-				0x10⁻² mol l ⁻¹)		
			⊠A gfm AgF = 107.9 \therefore n = ^m / _{gfm} =				•				
24	~	40	☑B gfm AgCl = 143.4 \therefore n = ^m / _{gfm} =								
24	В	48	$\mathbb{E}C$ gfm AgBr = 187.8 \therefore n = $^{m}/_{gfm}$ =								
			⊠D gfm AgI = 234.8 \therefore n = ^m / _{gfm} =								
			$\square A$ 10cm ³ of water is better measured in		tion carr	ied out in	conical fl	ask			
っち	٨	17									
25	Α	47	■C Volumetric/standard flasks are used t	• ·		n concenti	ration				
			🗵 D Volumetric/standard flasks are used t	o make up solutions of accura	tely know	n concent	ration				

20)22 Higher	Chemistry Marking Scheme					
Long Qu	Answer	Reasoning					
1a (i)	one answer from:	atoms/nuclei have the same electronegativity/ Bonding electrons same attraction for the electronegativity values given shared equally (between bonding electrons the atoms).					
1a (ii)	greater nuclear charge	Across a period, the number of protons increases giving a greater nuclear charge . The greater nuclear charge pulls the outer electron shell further which reduces the size of the atom.					
1b(i)	Answer to include:	The energy required to remove 1 mole of electrons from one mole of atoms in the gaseous state.					
1b(ii)	One answer from:	More shells so increased screening/shielding covalent radius increases atom size increases more shells so attraction of [nucleus protons] for outer electrons decreases					
1c(i)	Answer to include:	Hydrogen bonding (1 mark) 1 mark for either: Hydrogen bonding occurs between hydrogen bonded to N, O or F (all 3 elements needed)					
1c(ii)	Answer to include:	1st Mark:London dispersion forces become stronger (moving from HCl to HI)2nd Mark:Number of electrons increases (moving from HCl to HI)					
2a	3KClO ₄ + 8Al ↓ 3KCl + 4Al₂O₃	3KClO4 + 8Al → 3KCl + 4Al2O3					
2b(i)	1.35	gfm KClO ₄ = 122.6g no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{4.6}{122.6} = 0.0375\text{mol}$ $2\text{KIClO}_3 \longrightarrow 3O_2 + 2\text{KCl}$ 2mol 0.0375mol 0.0375mol 0.0563mol Volume = no. of mol × Molar Volume = $0.0563\text{mol} \times 24\text{litres mol}^3 = 1.35\text{litres}$					
2b(ii)	no effect	Catalysts speed up chemical reaction but do not get used up in that chemical reaction. The enthalpy change is the same for the catalysed and the non-catalysed route due to Hess's Law.					
2b(iii)	2595.6	5.5g 4 103kJ 1mol = 138.6g 4 103kJ × $^{138.6}/_{5.5}$ = 2595.6kJ					
2b(iv)	Answer to include:	1st Mark: Increases the number of particles with energy 2 equal to or greater or than the activation energy Increases the number of particles with (sufficient) energy to form an activated complex/to react 2nd Mark: More successful collisions Increases the number of particles or greater or activated complex/to react					
2c	Sodium	Peak B at 590nm. Sodium gives a flame colour at 589nm.					
3	Open Question Answer to Include:	3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.Demonstrates a reasonable understanding of the chemistry involved, Making some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.					

		Г <u> </u>						
4 a(i)	Ester link	—О—Н hydroxyl group	O - C - OH	O -C-O- ester link	O Carbonyl group			
4 a(ii)	Diagram showing:	ннннно н-с-с-с-с-с-с-с нннннн						
4 a(iii)	Structure of Heptan-1-ol or other C7 alcohol listed:	ester with butanoic a hydrolysis must have heptan-1-ol 2-methylhexan-1-ol 2-methylhexan-2-ol 2-methylhexan-3-ol 2,2-dimethylpentan-1-ol 3,3-dimethylpentan-2-ol 2,3-dimethylpentan-3-ol 2,3,3-trimethylbutan-2-ol 2-ethyl-2-methylbutan-1-o	ol 2-ethyl-3-methylbutan-1-ol	hydrolysis, the alcoho e 38 possible seven car heptan-3-ol 4-methylhexan-1-ol 4-methylhexan-2-ol 2,4-dimethylpentan-2-ol 2,3-dimethylpentan-2-ol 2,2,3-trimethylbutan-1-ol 3-ethylpentan-2-ol	l released by this bon alcohols. (I think!) heptan-4-ol 5-methylhexan-1-ol 5-methyl-hexan-2-ol 5-methylhexan-3-ol 3,3-dimethylpentan-1-ol 2,4-dimethylpentan-2-ol 2,3,3-trimethylbutan-1-ol 3-ethylpentan-3-ol			
4b(i)	35-45	TriglycerideGlyceryl trilinoleateGlyceryl tricaprateDifferenceNumber of Carbons57 carbons33 carbons24 carbonsAbsorbance Units19.316.13.23.2 difference in absorbance units = 24 carbonsGlyceryl trilaurate = 17.5 absorbance units (1.4 units above Glyceryl tricaprate)1.4 difference in absorbance units = 24 x ^{1.4} / _{3.2} = 10.5 carbons∴ Estimate of number of carbons in glyceryl trilaurate = 24 + 11 = 35						
4b(ii)	glyceryl trilinoleate	The lower the melting point, the higher the number of $C=C$ double bonds in molecule. Oil molecules do not fit as close together due to the change of direction in the carbon chain after a $C=C$ double bond. The further apart the molecules are, the lower the melting point as less energy is needed to separate the molecules into a liquid as there are weaker van der Waals' between oil molecules.						
4 c(i)	by react with glycerol	acids react with glyce	Fatty acids from edible oils <u>react</u> with glycerol by condensation reaction. One or two fatty acids react with glycerol to form an emulsifier. This will leave at least one polar -OH group on the glycerol part of the molecule needed to form the hydrophilic head on the emulsifier.					
4 c(ii)	Answer to include:	1 st Mark: Correctly identifying that the 2 emulsifier has two parts with different polarities or two parts that are hydrophobic/hydrophilic. 2 nd Mark: Hydrophobic part hydrocarbon chain fatty acid chain non-polar liquids dissolves in hydroxyl groups polar part						
5α	3-methylbutan-1-ol	$\begin{array}{c} \begin{array}{c} H \\ HH-C-HH \\ H-C-C-C-C-OH \end{array} & \begin{array}{c} \textbf{3-methylbutan-1-o} \\ \textbf{3-methylbutan-1-ol} \end{array}$						
5b(i)	C₃H⁊OH ↓ C₃H6O + 2H⁺ + 2e⁻	Strep 1: Write down main species in reaction C_3H_7OH $\rightarrow C_3H_6O$ $Step 2:$ Balance all atoms other than O or H (no change in this example) C_3H_7OH $\rightarrow C_3H_6O$ $Step 3:$ Balance O atoms by adding H_2O to the other side (no change in this example) C_3H_7OH $\rightarrow C_3H_6O$ $Step 4:$ Balance H atoms by adding H ⁺ to the other side C_3H_7OH $\rightarrow C_3H_6O + 2H^+$ $Step 5:$ Balance charge by adding electrons to the most positive side C_3H_7OH $\rightarrow C_3H_6O + 2H^+ + 2e^-$						

		It is a supervise the left hand side of the second in Tf the						
56	To provide 11+ iona	H ⁺ ions are a reactant on the left hand side of the equation. If the reactants are not acidified than one of the reactants will be absent and						
5b(ii)	To provide H⁺ ions	the chemical reaction will not proceed.						
		Oxidising Agent Start Colour End Colour						
		Acidified Dichromate Orange Green						
5b(iii)	orange $ ightarrow$ green	Fehling's Solution Blue Brick Red (orange)						
		Hot copper (II) oxide Black Brown						
		Tollen's Reagent (Colourless) Silver mirror produced						
		Oxidising AgentReactant(s)Product(s)Acidified Dichromate $Cr_2O7^{2-} + 14H^{+} + 6e^{-} \rightarrow 2Cr^{3+} + 7H_2O$						
5h(w)	Tollen's Reagent	Acidified Dichromate $Cr_2O7^{2^-} + 14H^+ + 6e^- \rightarrow 2Cr^{3^+} + 7H_2O$ Fehling's Solution $Cu^{2^+} + e^- \rightarrow Cu^+$						
5b(iv)	Tollens Reugeni	Hot copper (II) oxide $Cu^{2^+} + 2e^- \rightarrow Cu$						
		Tollen's Reagent $Ag^* + e^- \rightarrow Ag$						
	tertiary alcohols	Quidation Primary alcohol> Aldehyde> Carboxylic acid						
5b(v)	•	Oxidation of Alcohols Secondary alcohol						
	(do not oxidise)	Tertiary alcohol — X [No oxidation]						
-	1:10	Chemical Formula No. of O No. of H Oxygen : Hydrogen ratio						
5b(vi)	1:8	butan-1-ol C_4H_9OH 1 10 1:10						
		butanal C_4H_8O 1 8 1:8						
6a (i)	biological catalyst	An enzyme is a specially-shaped protein which acts as a biological						
		catalyst, catalysing chemical reactions in the body at 37°C.						
		ਸ਼ (<u>ਹੁੰਸ਼ੇ</u> (ਹੁੰਸ਼ੇ (ਹੁੰਸ਼ੇ						
	one peptide link							
	circled:							
6000	ОН	ĊH ₂ ĊH ₂ H						
6a(ii)A	II I	L I CH ₂ CH ₂						
	N	C=0 S						
		о́н с́н₃						
		нно нно						
		H-N-C-C-OH $H-N-C-OH$						
	one amino acid							
6a(ii)B	structure from:	or or H-N-C-C-OH CH2 CH2						
	STRUCTURE FROM.							
		C = O S						
		 ОН СН ₃						
6a(ii)C		Essential amino acids are amino acids which must be obtained from your diet for a healthy diet to be obtained. These amino acids compat he made by the body						
	obtained through diet	a healthy diet to be obtained. These amino acids cannot be made by the body.						
6 am	condensation	A condensation reaction occurs when two molecules join together to form						
6a(ii)D	condensation	a bigger molecule and water is removed at the join. Other small molecules can also be removed instead of water.						
6a (iii)	Answer to include:	1 st Mark: enzyme becomes denatured/enzyme changes shape						
		2 nd Mark: Intermolecular/hydrogen bonds are broken						
		measuring						
		oxygen cylinder						
	Answer to include	oxygen syringe						
6a (iv)		or delivery						
	one of:	hydrogen / hydrogen / tube						
		hydrogen peroxide peroxide begker						
		sweet potato						
		potato						
ļ	1							

6b(i)	one answer from:	To preventto oxidise in place of the compoundsto stop (oxidation of edible oils)unwanted oxidationthey have been added to protectfood acquiring a rancid flavour.						
6b(ii)	answer to include:	1st Mark: Vitamin C molecule is polar due to its hydroxyl groups Vitamin C can form hydrogen bonds due to its hydroxyl groups 2 nd Mark: Vitamin C is soluble in water because of interactions of polar -OH groups in Vitamin C with polar OH groups in						
6c	975g 2 marks for mass 1 mark for units	1kg body weight ↔ 3mg solanine 65kg body weight ↔ 3mg solanine x ⁶⁵ / ₁ =195g solanine 0.2mg solanine ↔ 1g of potato 195mg solanine ↔ 1g of potato x ¹⁹⁵ / _{0.2}						
7α	0.203g	$= 975g \text{ of potato}$ Heat Energy = Specific Heat Capacity X Mass X Change In Temperature $E_{h} = C \times m \times \Delta T$ $E_{h} = 4.18 \text{ kJ kg}^{-1} \circ C^{-1} \times 0.1 \text{ kg} \times 27^{\circ}C$ $E_{h} = 11.3 \text{ kJ}$ gfm Heptane CH ₄ = (1x12) + (4x1) = 12 + 4 = 16g 1 mol CH ₄ = 891 kJ \leftarrow 16g 11.3 kJ \leftarrow 16g 1.3 kJ \leftarrow 16g 2.203g						
7b	-816	Bond Breaking Steps (endothermic)Bond Forming Steps (exothermic)4xC-H bonds4x 412kJ = 1648kJ2xC=O bonds2x 804kJ = 1608kJ2xO=O bond2x 498kJ = 996kJ4xO-H bonds4x 463kJ = 1852kJTotal bond breaking= 2644kJTotal bond Forming= 3460kJEnthalpy change = ΣBond Breaking Steps - ΣBond forming steps = 2644 - 3460 = -816kJ mol ⁻¹						
7c	17.6%	atom economy = $\frac{\text{mass of useful products}}{\text{total mass of reactants}} \times 100 = \frac{(3\times2)}{(1\times16) + (1\times18)} \times 100 = 17.6\%$						
7d	High Low	Change in TemperatureChange In PressureMaximising Yield of NO2 = more reverse reactionMaximising Yield of NO2 = more reverse reaction• reverse reaction is endothermic• reverse reaction increases pressure (1vol→2vol)• Increasing temperature favours the endothermic reaction• Decreasing pressure favours the pressure- increasing reaction• HIGH temperature increases reverse reaction• LOW pressure increases reverse reaction• HIGH temperature increases yield of NO2• LOW pressure increases yield of NO2						
7e (i)	-4632	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
7e (ii)	H H H H-C-N-N-H H	ElementValencyNo of Bonds made by elementC44N33H11						

		A sub-line in a sub- when when the ball also former also be a set of the				
	increase	A catalyst increases the rate of both the forward and reverse reactions by lowering the activation energies of both the forward and reverse reactions.				
8a (i)	increase	The position of equilibrium is not changed but the time to get to equilibrium is				
	no effect	shortened.				
	≜	The forward reaction in the water-gas shift reaction is exothermic.				
		• Increasing the temperature favours the endothermic reaction				
	P P	 Reverse reaction is endothermic 				
8a (ii)	yield	 Reverse reaction is favoured by increasing the temperature 				
		 Less products formed as temperature increase 				
		 Graph has decreasing slope as yield decreases as temperature 				
	temperature	increases				
		gfm sorbic acid C ₆ H ₈ O ₂ = (6x12)+(8x1)+(2x16) = 72 + 8 + 32 = 112				
		no. of mol = $\frac{mass}{afm}$ = $\frac{7}{112}$ = 0.0625mol (available)				
		n KOH = volume x concentration = 0.25litres x 0.5mol l ⁻¹ = 0.125mol				
8b	Calculation showing:	$C_6H_8O_2$ + KOH \longrightarrow H ₂ O + $C_6H_7O_2$				
		1mol 0.125mol				
		(required)				
		Less n o. of mol of sorbic acid available than is required				
		Sorbic acid is limiting reactant and KOH is in excess				
		$1\% = 1g \text{ per } 100 \text{ cm}^3$				
	2.52x10 ⁻⁵	0.002% = 0.002g per 100cm ³				
		$100 \text{ cm}^3 = 0.002g$				
8c	or	$330 \text{ cm}^3 = 0.002g \times \frac{330}{100} = 0.0066g$				
		gfm = 261.8g				
	0.0000252					
		n o. of mol = $\frac{mass}{gfm}$ = $\frac{0.0066}{261.8}$ = 2.52×10 ⁻⁵ mol				
	non-water soluble	Essential oils are concentrated extracts of volatile, non-water soluble				
	or	aroma compounds from plants				
8d(i)A	volatile	 mixtures of many different compounds. 				
	or	widely used in				
	aroma	perfumes cosmetic products cleaning products flavourings in foods				
		Terpenes are key components in most essential oils.				
8d(i)B	terpene	Terpenes are unsaturated compounds formed by joining				
Part I		together isoprene (2-methylbuta-1,3-diene) units.				
		Η A				
	correct structure					
8d(i)B	drawn of					
Part II	2 mathulbut 1 2 diama					
	2-methylbut-1,3-diene					
		$ H H H_3 C C H_2 $				
		Formula of zingiberene: C15H24				
8d(i)B	3	Formula of isoprene: C_5H_8 \therefore 3 isoprene units join together				
Part III						
		The difference between the two molecules is the a C=C double bond is				
8d(ii)A	water or H2O	formed in the product and an H atom was removed on one side where the C=C double bond formed and a OH group was removed from the other				
		side of where the C=C double bond formed.				

								1
8d(ii)B	Hydroxyl group <u>and</u> Carbonyl Group		-O-H	0 - C -	- OH	carbon	yl group	
						<u> </u>]
9	Open Question Answer to Include:	Demonstrates of of the chemistr comprehension provided in a log including a stat	ement of the principle e application of these	Demonstrates of understanding of involved, making statement(s) will relevant to the	of the chemistry g some hich are situation,	Demonstrates understanding involved. The some stateme to the situati	g of the chemist candidate has m ent(s) which are on, showing that chemistry with	try nade relevant at least
10a(i)	One from:	tl Lower the	e number of chl he higher the O e number of fluc he higher the O	DP prine atoms	t Higher th	the lower t	of fluorine a	
10a(ii)	1+1	-	t Compound 1 t Compound 1					
10a(iii)	Carbon dioxide and ammonia do not contain halogens or Carbon dioxide and ammonia do not damage the ozone layer		H₃ lack group 7 rant compound		-			
10b(i)	Species (atoms/molecules/particles) with unpaired electron		als are atoms of an unpaired		that are h	ighly read	tive due to	o the
10b(ii)A	Initiation	Pr	Step Initiation Popagation ermination	Reactants (before Arrow) No free radicals Reactant Side Free Radic Free radicals o Reactant Side	on als found on bo n	(afte Free r Prod th sides of ar No free	ducts rr Arrow) adicals on uct Side row radicals on uct Side	
10b(ii)B	One from:		CH ₃ F + •CH ₂ F + F ₂ + •CH ₂ F +	•CH₃ —	→ CH → CH	l₃F +	F•	
10c	0.208	$0.05 \text{ kg} \qquad \qquad$						
11a(i)	water ^{and} carbon dioxide	copper (I carbonat metal carbond		c	pper (II) thanoate ^{salt}	+ water + water	0102	bon xide dioxide
11a(ii)	Cu²⁺(CH₃COO⁻)₂	Copper (II) has a valency of 2 and forms Cu ²⁺ ions Ethanoate ions has a formula of CH ₃ COO ⁻ and valency of 1. Formula of copper (II) ethanoate is Cu(CH ₃ COO). Ionic formula of copper (II) ethanoate is Cu ²⁺ (CH ₃ COO ⁻) ₂						

		1 mark	1mark	1mark			
11b	Answer to include:	Dissolve oxalic acid (in a small volume of deionised water)	Transfer quantitatively oxalic acid solution to standard/volumetric flask including rinsings/washings	Fill volumetric/standard flask up to mark (with deionised water)			
11c(i)		Volumetric bulb pipette to be drawn showing: • volumetric mark/line • end of pipette must narrow to a point A graduated pipette would also be acceptable.					
11c(ii)	pink $ ightarrow$ colourless	Colour in conical flask at start: <u>pink</u> as sodium hydroxide solution is in conical flask at start and phenolphthalein is pink in alkaline conditions Colour in conical flask at end: <u>colourless</u> as sodium hydroxide in conical flask has been neutralised by the addition of oxalic acid from the burette. Phenolphthalein is colourless in acidic/neutral conditions					
11c(iii)	concordant	Results in a titration are described as concordant when the individual titres are within 0.2cm ³ of each other. This ignores the rough titre and any rogue results.					
11d	0.27		olume x concentration = 0.02675litres + 2NaOH → Na ₂ C 2mol 0.00674mol n = <u>no. of mol</u> = <u>0.00674mol</u> 0.025litres	204 + 2H2O			