

Grade Awarded	Mark Required		$\%$ candidates achieving grade
	$(/ 120)$	$\%$	
A	$84+$	70.0%	34.9%
B	$68+$	56.7%	24.1%
C	$53+$	44.2%	19.3%
D	$37+$	30.1%	12.9%
No award	<37	$<30.1 \%$	8.8%

$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Section: } & \text { Multiple Choice } & \text { Extended Answer } & \text { Assignment } \\ \hline \text { Average Mark: } & 16.4 & 125 & 55.1 & / 95\end{array}\right)$ No Assignment in 2022.

20	C	XA No effect as neither Na^{+}or Cl^{-}ions is a reactant or product and don＇t react with a reactant／product囚 H^{+}ions in $\mathrm{HCl} \mathrm{laq}_{\text {（a）}}$ increases concentration of a product \therefore ．equilibrium shifts to left \dagger $\nabla \mathrm{COH}^{-}$ions in $\mathrm{NaOH}_{(a q)}$ neutralises H^{+}in products ．equilibrium shifts to right to replace H^{+}ions खD $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions in $\mathrm{CH}_{3} \mathrm{COONa}(a)$ increases concentration of product ．．equilibrium shifts to left					
21	D	Quantity	Measured	A	B	c	D
		Enthalpy of Reactants （ $\mathrm{kJ} \mathrm{mol}^{-1}$ ）	Where R starts on y－axis	30	30	30	30
		Activation Energy of Forward Reaction $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	Difference between R and top of hill	$\begin{aligned} & 80.30 \\ & =50 \end{aligned}$	$\begin{array}{r} 110 \cdot 30 \\ =80 \\ \hline \end{array}$	$\begin{array}{r} 110 \cdot 30 \\ =80 \\ \hline 8 \end{array}$	$\begin{array}{r} 140-30 \\ =110 \\ \hline \end{array}$
		Activation Energy of Reverse Reaction（ $\mathrm{kJ} \mathrm{mol}^{-1}$ ）	Difference between P and top of hill	$\begin{aligned} & 80-40 \\ & =40 \end{aligned}$	$\begin{aligned} & 110 \cdot 40 \\ & =70 \end{aligned}$	$\begin{aligned} & 110 \cdot 70 \\ & =40 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 140-70 \\ =70 \end{array} \end{aligned}$
22	B	$\begin{aligned} & \Delta H_{4}=\Delta H_{1}-\Delta H_{2}-\Delta H_{3} \\ & \Delta H_{4}=-210-(-50)-(-86) \\ & \Delta H_{4}=-74 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$ But ΔH for Z to $Y=+74 \mathrm{~kJ} \mathrm{~mol}^{-1}$					
23	A	$50 \mathrm{~cm}^{3}$ diluted in a $250 \mathrm{~cm}^{3}$ standard／volumetric flask gives 1 in 5 dilution． $0.100 \mathrm{~mol} \mathrm{l}^{-1}$ given 1 in 5 dilution results in solution becoming $0.02 \mathrm{~mol}^{-1}$（or 2.0×10^{-2} mol l^{-1} ）					
24	B	ख $A \mathrm{gfm}$ AgF $=107.9 \therefore \mathrm{n}=\mathrm{m} / \mathrm{gfm}=2.868 / 107.9=0.0266 \mathrm{~mol}$ $\nabla \mathrm{Bgfm} \mathrm{AgCl}=143.4 \therefore \mathrm{n}=\mathrm{m} / \mathrm{gfm}=2.868 / 143.4=0.0200 \mathrm{~mol}$ ख $C \mathrm{gfm} \mathrm{AgBr}=187.8 \therefore \mathrm{n}=\mathrm{m} / \mathrm{gfm}=2.868 / 187.8=0.0153 \mathrm{~mol}$ ख $\mathrm{D} \mathrm{gfm} \mathrm{AgI}=234.8 \quad \therefore \mathrm{n}=\mathrm{m} / \mathrm{gfm}=2.868 / 234.8=0.0122 \mathrm{~mol}$					
25	A	$\boxtimes A 10 \mathrm{~cm}^{3}$ of water is better measured in a measuring cylinder and titration carried out in conical flask区 B beakers are not as accurate as measuring cylinders for measuring volumes खC Volumetric／standard flasks are used to make up solutions of accurately known concentration 区D Volumetric／standard flasks are used to make up solutions of accurately known concentration					

4a(i)	Ester link	$-\mathrm{O}-\mathrm{H}$			
		hydroxyl group	carboxyl group	ester link	carbonyl group
4a(ii)	Diagram showing:				
4a(iii)	Structure of Heptan-1-ol or other C_{7} alcohol listed:	Propyl octanoate has a total of 11 carbons. For the isomer of propyl octanoate to be an ester with butanoic acid being released during hydrolysis, the alcohol released by this hydrolysis must have seven carbons. There are 38 possible seven carbon alcohols. (I think!)			
		heptan-1-0l	heptan-2-01	heptan-3-01	heptan-4-01
		2-methylhexan-1-01	3-methylhexan-1-0l	4-methylhexan-1-01	5-methylhexan-1-01
		2-methylhexan-2-01	3-methylhexan-2-01	4-methylhexan-2-01	5-methyl-hexan-2-01
		2-methylhexan-3-01	3-methylhexan-3-01	4-methylhexan-3-01	5-methylhexan-3-01
		2,2-dimethylpentan-1-01	2,3-dimethylpentan-1-01	2,4-dimethylpentan-1-01	3,3-dimethylpentan-1-01
		3,4-dimethylpentan-1-01	4,4-dimethylpentan-1-01	2,3-dimethylpentan-2-01	2,4-dimethylpentan-2-01
		3,3-dimethylpentan-2-01	3,4-dimethylpentan-2-01	4,4-dimethylpentan-2-01	2,2-dimethylpentan-3-01
		2,3-dimethylpentan-3-01	2,4-dimethylpentan-3-01	2,2,3-trimethylbutan-1-ol	2,3,3-trimethylbutan-1-0\|
		2,3,3-trimethylbutan-2-0l	3-ethylpentan-1-01	3-ethylpentan-2-01	3-ethylpentan-3-0\|
		2-ethyl-2-methylbutan-1-ol	2-ethyl-3-methylbutan-1-01		
$4 b(i)$	35-45	Triglyceride	Glyceryl trilinoleate	Glyceryl tricaprate	Difference
		Number of Carbons	57 carbons	33 carbons	24 carbons
		Absorbance Units	19.3	16.1	3.2
		3.2 difference in absorbance units $=24$ carbons Glyceryl trilaurate $=17.5$ absorbance units (1.4 units above Glyceryl tricaprate) 1.4 difference in absorbance units $=24 \times 1.4 / 3.2=10.5$ carbons \therefore Estimate of number of carbons in glyceryl trilaurate $=24+11=35$			
$4 b(i i)$	glyceryl trilinoleate	The lower the melting point, the higher the number of $C=C$ double bonds in molecule. Oil molecules do not fit as close together due to the change of direction in the carbon chain after a $C=C$ double bond. The further apart the molecules are, the lower the melting point as less energy is needed to separate the molecules into a liquid as there are weaker van der Waals' between oil molecules.			
$4 C(i)$	by react with glycerol	Fatty acids from edible oils react with glycerol by condensation reaction. One or two fatty acids react with glycerol to form an emulsifier. This will leave at least one polar -OH group on the glycerol part of the molecule needed to form the hydrophilic head on the emulsifier.			
$4 C(i i)$	Answer to include:	$1^{\text {st }}$ Mark:Correctly identifying that the 2 emulsifier has two parts with different polarities or two parts that are hydrophobic/hydrophilic.			
		: $\left.\begin{array}{r}\begin{array}{r}\text { Hydrophobic part } \\ \text { hydrocarbon chain } \\ \text { fatty acid chain } \\ \text { non-polar part }\end{array}\end{array}\right]$ dissolves inhydroph non-polar liquids\quadhydroxy po			dissolves in polar liquids
$5 a$	3-methylbutan-1-ol				
$5 b(i)$		Step 1: Write down m $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ Step 2: Balance all at $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ Step 3: Balance O ato $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ Step 4: Balance H at $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$ Step 5: Balance charg $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	main species in reactio atoms other than O or toms by adding $\mathrm{H}_{2} \mathrm{O}$ to toms by adding H^{+}to the \rightarrow rge by adding electrons	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ H (no change in this ex $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ the other side (no cha $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ he other side $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+2 \mathrm{H}^{+}$ to the most positive $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+2 \mathrm{H}^{+}$	ample) ge in this example)

$5 b(i i)$	To provide H^{+}ions	H^{+}ions are a reactant on the left hand side of the equation. If the reactants are not acidified than one of the reactants will be absent and the chemical reaction will not proceed.
$5 b(i i)$	orange \rightarrow green	Oxidising Agent Start Colour $^{\text {and Colour }}$
		Acidified Dichromate Orange Green
		Fehling's Solution Blue $^{\text {a }}$ (Brick Red (orange)
		Hot copper (II) oxide Black Brown
		Toller's Reagent \quad (Colourless) Silver mirror produced $^{\text {a }}$
$5 b(i v)$	Tollen's Reagent	Oxidising Agent \quad Reactant(s) Product(s)
		Acidified Dichromate $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2+}+14 \mathrm{H}^{+}+6 e^{-} \quad \rightarrow \quad 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
		Fehling's Solution $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \quad \rightarrow \quad \mathrm{Cu}^{+}$
		Hot copper (II) oxide $\quad \mathrm{Cu}^{2+}+2 e^{-} \quad \rightarrow \quad \mathrm{Cu}$
		Tollen's Reagent $\quad \begin{array}{clcl} \\ \mathrm{Ag}^{+}+e^{-} & \rightarrow & \mathrm{Ag}\end{array}$
$5 b(v)$	tertiary alcohols (do not oxidise)	Primary alcohol \longrightarrow Aldehyde \longrightarrow Ketone $\longrightarrow X$ Carboxylic acidSecondary alcohol \longrightarrow [No oxidation]Tertiary alcohol $\longrightarrow X$ [No oxidation]
$5 b(v i)$	1:10	Chemical Formula $^{\text {No. of O }}$ No. of H O Oxygen: Hydrogen ratio
	1:8	butanal $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ 1 8 $1: 8$
6a(i)	biological catalyst	An enzyme is a specially-shaped protein which acts as a biological catalyst, catalysing chemical reactions in the body at $37^{\circ} \mathrm{C}$.
$6 a(i i) A$	one peptide link circled:	
$6 a(i i) B$	one amino acid structure from:	 or or
6a(ii)C	amino acid which must be obtained through diet	Essential amino acids are amino acids which must be obtained from your diet for a healthy diet to be obtained. These amino acids cannot be made by the body.
$6 a(i i) D$	condensation	A condensation reaction occurs when two molecules join together to form a bigger molecule and water is removed at the join. Other small molecules can also be removed instead of water.
6a(iii)	Answer to include:	$1^{\text {st }}$ Mark: enzyme becomes denatured/enzyme changes shape $2^{\text {nd }}$ Mark: Intermolecular/hydrogen bonds are broken
6a(iv)	Answer to include one of:	

$8 a^{(i)}$	increase increase no effect	A catalyst increases the rate of both the forward and reverse reactions by lowering the activation energies of both the forward and reverse reactions. The position of equilibrium is not changed but the time to get to equilibrium is shortened.
8a(ii)		The forward reaction in the water-gas shift reaction is exothermic. - Increasing the temperature favours the endothermic reaction - Reverse reaction is endothermic - Reverse reaction is favoured by increasing the temperature - Less products formed as temperature increase - Graph has decreasing slope as yield decreases as temperature increases
$8 b$	Calculation showing:	gfm sorbic acid $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}=(6 \times 12)+(8 \times 1)+(2 \times 16)=72+8+32=112$ $\text { no. of } \mathrm{mol}=\frac{\text { mass }}{\mathrm{gfm}}=\frac{7}{112}=0.0625 \mathrm{~mol} \text { (available) }$ $n \mathrm{KOH}=$ volume \times concentration $=0.25$ litres $\times 0.5 \mathrm{~mol}^{-1}=0.125 \mathrm{~mol}$ Less no. of mol of sorbic acid available than is required \therefore Sorbic acid is limiting reactant and KOH is in excess
8	$\begin{gathered} 2.52 \times 10^{-5} \\ \text { or } \\ 0.0000252 \end{gathered}$	$\begin{gathered} 1 \%=1 \mathrm{~g} \mathrm{per} 100 \mathrm{~cm}^{3} \\ 0.002 \%=0.002 \mathrm{~g} \text { per } 100 \mathrm{~cm}^{3} \\ 100 \mathrm{~cm}^{3}=0.002 \mathrm{~g} \\ 330 \mathrm{~cm}^{3}=0.002 \mathrm{~g} \times 330 / 100=0.0066 \mathrm{~g} \\ \mathrm{gfm}=261.8 \mathrm{~g} \\ \text { no. of mol }=\frac{\text { mass }}{g \mathrm{fm}}=\frac{0.0066}{261.8}=2.52 \times 10^{-5} \mathrm{~mol} \end{gathered}$
$8 d(i) A$	non-water soluble or volatile or	Essential oils are concentrated extracts of volatile, non-water soluble aroma compounds from plants - mixtures of many different compounds. - widely used in
	aroma	perfumes cosmetic products $^{\text {cleaning products }}$ flavourings in foods
$8 \underset{\text { Part I }}{8}(\mathrm{i}) \mathrm{B}$	terpene	Terpenes are key components in most essential oils. Terpenes are unsaturated compounds formed by joining together isoprene (2-methylbuta-1,3-diene) units.
$8 \underset{\text { Part II }}{8 d i}$	correct structure drawn of 2-methylbut-1,3-diene	
$8 d(i) B$ Part III	3	Formula of zingiberene: $\mathrm{C}_{15} \mathrm{H}_{24}$ Formula of isoprene: $\mathrm{C}_{5} \mathrm{H}_{8}$ $\therefore 3$ isoprene units join together
$8 d(\mathrm{ii}) \mathrm{A}$	water or $\mathrm{H}_{2} \mathrm{O}$	The difference between the two molecules is the a $C=C$ double bond is formed in the product and an H atom was removed on one side where the $C=C$ double bond formed and a OH group was removed from the other side of where the $C=C$ double bond formed.

8d(ii)B	Hydroxyl group and Carbonyl Group	-O-H					
			hydroxy 9 grup	carbox	group		
9	Open Question Answer to Include:		3 mark answer ates a good understand nsion of the chemistry has in a logically correct and the application of these d to the problem.	2 mark			wer emistry are relevant that at least within the
$10 \mathrm{a}(\mathrm{i})$	One from:	Higher the number of chlorine atoms the higher the ODP			Lower the number of chlorine atoms the lower the ODP		
		Lower the number of fluorine atoms the higher the ODP			Higher the number of fluorine atoms the lower the ODP		
10a(ii)	1+5	Refrigerant Compound 1 has 2 carbons, 4 fluorines and 2 bromines Refrigerant Compound 1 has 2 carbons, 4 fluorines and 2 chlorines					
10a(iii)	Carbon dioxide and ammonia Carbon dioxide ond ammonia do not damage the ozone lay	CO_{2} and NH_{3} lack group 7 elements (halogen) atoms in their structure. All refrigerant compounds in table have halogen atoms in their structure					
10b(i)	Species (atoms/molecules/particles) with unpaired electron	Free radicals are atoms or molecules that are highly reactive due to the presence of an unpaired electron.					
10 b (i) A	Initiation		Step				
			Initiation				
			Propagation				
			Termination	Free radicals onReactant Side $\longrightarrow \begin{gathered}\text { No free radicals on } \\ \text { Product Side }\end{gathered}$			
10 b (i) B	One from:	$\begin{aligned} \hline \mathrm{CH}_{3} \mathrm{~F}+\mathrm{F}^{\cdot} \longrightarrow \mathrm{CH}_{2} \mathrm{~F}+\mathrm{HF} \\ { }^{\cdot} \mathrm{CH}_{2} \mathrm{~F}+\mathrm{F}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{~F}_{2}+\mathrm{F}^{\cdot} \\ \mathrm{F}_{2}+{ }^{\cdot} \mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{~F}+\mathrm{F}^{\cdot} \\ { }^{\cdot} \mathrm{CH}_{2} \mathrm{~F}+\mathrm{HF} \longrightarrow \mathrm{CH}_{2} \mathrm{~F}_{2}+\mathrm{H}^{\cdot} \end{aligned}$					
10c	0.208	$\text { no. of mol }=\frac{\text { mass }}{\mathrm{gfm}}=\frac{25 \mathrm{~g}}{120 \mathrm{~g} \mathrm{~mol}^{-1}}=0.208 \mathrm{~mol}$					
$11 a(i)$	$\begin{gathered} \text { water } \\ \text { and } \\ \text { caron dioxide } \end{gathered}$						
11a(ii)	$\mathrm{Cu}^{2+}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)_{2}$	Copper (II) has a valency of 2 and forms Cu^{2+} ions Ethanoate ions has a formula of $\mathrm{CH}_{3} \mathrm{COO}^{-}$and valency of 1 . Formula of copper (II) ethanoate is $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)$. Ionic formula of copper (II) ethanoate is $\mathrm{Cu}^{2+}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)_{2}$					

11b	Answer to include:	1 mark	1 mark	1mark
		Dissolve oxalic acid (in a small volume of deionised water)	Transfer quantitatively oxalic acid solution to standard/volumetric flask including rinsings/washings	Fill volumetric/standard flask up to mark (with deionised water)
11c(i)	-	Volumetric bulb pipette to be drawn showing: - volumetric mark/line - end of pipette must narrow to a point A graduated pipette would also be acceptable.		
11c(ii)	pink \rightarrow colourless	Colour in conical flask at start: pink as sodium hydroxide solution is in conical flask at start and phenolphthalein is pink in alkaline conditions Colour in conical flask at end: colourless as sodium hydroxide in conical flask has been neutralised by the addition of oxalic acid from the burette. Phenolphthalein is colourless in acidic/neutral conditions		
11C(iii)	concordant	Results in a titration are described as concordant when the individual titres are within $0.2 \mathrm{~cm}^{3}$ of each other. This ignores the rough titre and any rogue results.		
11d	0.27	Oxalic acid no. of $\mathrm{mol}=$ volume \times concentration $=0.02675_{\text {litres }} \times 0.126_{\mathrm{mol}} \mathrm{t}^{-1}=0.00337 \mathrm{~mol}$$\begin{aligned} & \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \mathrm{~mol} \\ & \text { 0.00337mol } \end{aligned}+\underset{\substack{2 \mathrm{~mol} \\ 0.00674 \mathrm{~mol}}}{2 \mathrm{NaOH}} \longrightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}$		

